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Recurrence properties of a point particle moving on a regular lattice randomly 
occupied with scatterers are studied for strictly deterministic, nondeterministic, 
and purely random scattering rules. 
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1. I N T R O D U C T I O N  

In the classical Lorentz gas one particle moves in R 3 and collides elastically 
with randomly placed spheresJ 1) In the Ehrenfest wind-tree model the par- 
ticle is elastically scattered by randomly placed diamonds whose diagonals 
are parallel to the coordinate axes. (2) In this paper we consider several 
models of cellular automata which in a sense can be thought of as the 
restriction of either of the above models to the square lattice Z 2 or to 
the regular triangular lattice T 2. Our aim is the rigorous analysis of the 
recurrence properties of the various models. The recurrence properties 
change dramatically when the collision rules change from various combina- 
tions of deterministic and probabilistic rules. We also consider a related 
purely random model which is not of cellular automaton type. 

2. DESCRIPTION OF THE MODELS A N D  S T A T E M E N T  
OF THE RESULTS 

The models considered here are mostly lattice versions of Lorentz gas 
(or wind-tree) models. The first, which was introduced by Ruijgrok and 
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4 
Fig. 1. (a) Right mirror. (b) Left mirror. 

Cohen, (3) we call the deterministic mirror model (DM). In this model 
two-sided mirrors, interpreted as scatterers or trees, are placed at the sites 
of the square lattice Z 2. They can align along either one of the diagonal 
directions of the lattice, and will be called left or right mirrors, depending 
on the direction (Fig. 1). The mirrors are placed randomly on Z 2 with 
respect to the infinite product probability measure p on the space 
(2 := {0, L, R} z2 determined by the concentrations CL and CR of left and 
right mirrors with the obvious constraint C : = C L +  CRy< 1. A (wind) 
particle with unit speed and four possible directions propagates along the 
bonds of the lattice and is reflected by the scatterers (Fig. 2). Thus, the DM 
model is a deterministic cellular automaton. If CR or CL equals 0, then the 
path of the particle travels monotonically toward ~ (Fig. 3). 

T h e o r e m  1. For the DM model on the Z 2 lattice, if C =  1, CR > 0, 
and CL > 0, then with probability 1 orbits are periodic. 

Grimmett has proven this theorem in the case CR= CL= 1/2. (4) He 
conjectures that for C < 1 the probability of infinite orbits is positive for the 
case CR= CL. Cohen, Kong, Ruijgrok, and Ziff (3'5-9) have extensively 
studied this model. Their latest simulations indicate that this may not be 
the case. (8'9) 

The DM model, in the case C =  1, C R > 0, and CL >0,  is equivalent 
to the model of randomly tiling the plane with "Truchet tiles," shown in 

Fig. 2. 
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Fig. 4. To get such a tiling from the DM model, trace out all paths on a 
configuration, but curve the path as it hits the mirror. Finally, erase all the 
mirrors. This model was introduced by Pickover (l~ in connection with 
visual tests to check if 0-1 sequences are random or not. Roux et aL (12~ 

have also independently introduced this model. Various authors have 
studied relations to fractal dimension of "hulls" of percolation clusters, for- 
mations of polymers, smart  kinetic walks, transport  properties, etc. (~3 16~ 

The next model we consider has a different scatering rule. Instead of 
left and right mirrors on Z 2, we have rotators (revolving doors) that 
revolve clockwise and counterclockwise. These rotators always turn the 

Fig. 4, Truchet tiles. 
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Fig. 5. (a) Right rotator. (b) Left rotator. 

particle 90 ~ to the left and right, respectively (Fig. 5). Again we consider an 
independent measure on the probability space f2 := {0, L , R }  z2. This 
model, which we call the deterministic rotator  model (DR), was introduced 
by Gunn and Ortufio. (17) 

Theorem 2. For  the DR model on Z2: 

(i) There exists poe(0.5,  1) such that orbits are periodic with 
probability 1 if CL > Pc or CR > Pc. 

(ii) If  C =  1, then orbits are periodic with probability 1. 

The constant Pc is the critical parameter  for site percolation on Z 2. 
Numerical studies show that Pc ~0.59. Kong and Cohen (v) have noticed 
behavior similar to this in their simulations. 

Kong and Cohen (6) have defined models on the regular equilateral 
triangular lattice T 2 which are analogous to the D M  and DR models 
on Z 2. For  the D M  model the two types of mirrors, left and right (Fig. 6), 
are placed on the sites of the lattice. For  the DR model the scatterers turn 
the particle 60 ~ clockwise or counterclockwise (Fig. 7). We again consider 

Fig. 6. (a) Right mirror. (b) Left mirror. 
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Fig. 7. (a) Right rotator. (b) Left rotator. 

an independent probability measure # on the space Q := {0, L, R} T2. As 
before, a particle with unit speed propagates along the bonds of the lattice 
and is scattered by the scatterers. 

T h e o r e m  3. For the DM and DR models on the T 2 lattice if 
CL >~ 1/2 or CR ~> 1/2, then with probability 1 orbits are periodic. 

C o r o l l a r y .  If C =  1, then with probability 1 orbits are periodic. 

For any of the models considered, let P(r, t) be the probability density 
to find the particle at the position r e Z 2 (resp. T 2) at time t, when it started 
at the origin at time t = 0. Here we choose each of the original four direc- 
tions (resp. six) with equal probability. For a normal diffusion process, 
P(r, t) is asymptotically Gaussian, i.e., there exists a constant D such that 

1 ( - [ r ]  2'] 
P(r, t) ~ ~--D-~ ex p \4rcDt]  (1) 

The mean square displacement of the particle is then 

3(t)=f Irl 2 P(r, t) dr~4Dt  

A diffusion is called non-Gaussian if the asymptotic distribution P(r, t) is 
not of the form (1). 

T h e o r e m  4. The diffusions for the DM and DR models on Z 2 and 
T 2 are non-Gaussian. 

The simulations of Kong and Cohen (5~ indicate that the diffusion is 
anomalous, that is, it is non-Gaussian, but the mean-square displacement 
is still proportional to t. Theorem 4 also holds for the natural generaliza- 
tions of these models to any regular finite-dimensional lattice (for example, 
the Z n lattice for any n >~ 2). 
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In Z 2 label the four edges coming to a vertex 0, 1, 2, 3 so that on a 
clock the edge corresponds to 3i o'clock. A general scattering rule is given 
by a function f :  {0, 1, 2, 3} ~ {0, 1, 2, 3}. There are 256 such general 
scattering rules. For  example, a left mirror in the DM model is given by 
the rule f ( i )  = 1 - i rood 4. Two rules f and g are rotationally equivalent 
( f  ~ r g) if 3k such that f ( i )  + k mod 4 - g(i  + k mod 4). A set of general 
scattering rules is called rotationally symmetric if it contains only complete 
rotational symmetry classes (S is complete if Vgs S if f ~ r g, then f e  S). 
For example, the set consisting of a left and a right mirror is a complete 
rotational symmetry class. The set {Id}, where I d ( i ) : = i + 2 m o d 4  (the 
straight-ahead mapping), is called the trivial rotationally symmetric class. 
The same can be defined for T 2, except now there are six edges, f ~ r  g if 
3k such that f ( i )  + k mod 6 - g(i  + k mod 6) and Id(i) := i + 3 rood 6 is the 
trivial rotational symmetry class. For  Z n there are (2n) 2n general scattering 
rules. Let e m :---= (0 ..... 0, 1, 0 ..... 0), where the 1 is in the mth spot. Let Am, n 

be the plane through the origin spanned by the vectors e m and e n. 
Two general scattering rules f and g are called rotationally equivalent if 
3m, n (m ~ n) and k such that (assuming for convenience that the four 
edges in the plane Am, n a re  numbered 0, 1, 2, 3 in clockwise order) 
f ( i )  + 6(i)  mod 4 = g(i  + 6 ( f ( i ) )  mod 4), where 6( j )  = 0 if j r  {0, 1, 2, 3 } 
and 6 ( j ) = k  if j e  {0, 1, 2, 3}. Again Id, the straight ahead mapping, is 
called the trivial rotational symmetry class. Suppose s is a configuration 
space of (some) generalized scattering rules on Z 2, T 2, or Z n and/~ is an 
independent probability measure on (2. 

T h e o r e m  5. If /~ gives positive measure to each element of any 
nontrivial rotationally symmetric class on T 2 or Z n (n~>2), then the 
diffusion is non-Gaussian. 

The condition of rotational symmetry, although a natural physical 
condition to impose, is far from being necessary for the diffusion to be non- 
Gaussian. For  example, the diffusion is non-Gaussian for the pair {f, g} 
given by f (0 )  = 0 , / ( 1 )  = 2 , / ( 2 )  = 3, f (3 )  = 1, g(0) = 1, g(1) = 3, g(2) = 2, 
and g (3 )=0 .  Theorem5 can be extended in the obvious way to any 
regular finite-dimensional lattice. 

The next model is the flipping mirror model (FM). The model is iden- 
tical to the DM model except in the rules of the propagation of the particle. 
Fix p such that 0 < p ~< 1. A particle again propagates along the bonds of 
the lattice and is reflected by the scatterers, but in addition a mirror 
changes from left to right and vice versa independently with probability p 
when it is hit by a particle. It is worthwhile to stress that we consider the 
motion of a single particle in the lattice. For the DM model there is no dif- 
ference from the case when there are many moving particles in the lattice. 
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However,  for the F M  model  this difference is essential because the flipping 
generates some special type of interaction between particles. For  p E (0, 1) 
the F M  model  is a stochastic cellular au tomaton.  For  p = 1 it is a deter- 
ministic cellular au tomaton.  In the spacial case p = 1 the F M  model  was 
introduced by Ruijgrok and Cohen (3) on Z 2 and by Kong  and Cohen  (6) on 
T 2. E. G. D. Cohen has communica ted  to us that  the case p r 1, a l though 
unpublished, was also considered in their computer  experiments and 
is briefly ment ioned in ref. 8. Completely analogously,  we can define a 
flipping ro ta tor  model  (FR). We say that an orbit a is unbounded  if there 
is no compact  set L c Z 2 (resp. T 2) such that a ~ L. 

T h e o r e m  6. For  the F M  model  on Z 2 all orbits are unbounded  
and thus no orbit  is periodic. For  the FR  model  on Z 2 and the F M  and 
FR  models on T 2 if p = 1 and 0 < C < 1, then the probabil i ty of the origin 
being periodic is positive, while for p = C = 1 or p < i or C = 0 all orbits 
are unbounded  and thus no orbit  is periodic. 

Several parts of this theorem were already known;  in particular, K o n g  
and Cohen (6) have shown that  for the F M  model on T z if p = 1 and C = 1, 
then all orbits are unbounded  and in fact all orbits go to infinity in a 
"linear" way. (6) This works equally well for the FR model on T 2. Cohen 
has shown that for the FR  model on Z 2 if p =  1 and 0 < C <  1, then the 
probabil i ty of the origin being periodic is positive. (8) Combining the proof  
of Theorem 4 with Theorem 6, we have the following result. 

C o r o l l a r y .  For  the F M  and FR  models on T 2 with p =  1 and for 
the FR  model  on Z 2 with 0 < C < p = 1 the diffusion is non-Gaussian.  

The numerical simulations of K o n g  and Cohen (5'8) indicate that  for 
the F M  model  on Z 2 the diffusion is Gaussian for all p > 0. Notice that if 
p = 0 ,  then the F M  model  reduces to the D M  model. In the proof  of 
Theorem 4 we show that  for the D M  model, orbits are periodic with 
positive probability. Contras t ing this fact with Theorem 6, we see that  the 
F M  model  undergoes a phase transition when p- - ,  0 and that the F M  and 
the FR  models on T 2 undergo phase transitions for the case C <  1 when 
p ~ 1 as well as for the case p = 1 when C ~ 1. 

The last model  we consider we call the r andom mirror  model  on Z 2 
(RM). In  this model  a particle propagates  along the bonds of the lattice. 
At each instant we place, with probabil i ty CR, Co, or 1 - C, a right mirror,  
a left mirror,  or no mirror  at all. If we visit a lattice site more  than once, 
then the mirrors at this location at different times are independent  of each 
other. Analogously,  we can define a r andom ro ta tor  model  on Z 2 (RR). 

T h e o r e m  7. For  the R M  and RR models on Z 2, if CR = Cr > O, 
then with probabil i ty 1 orbits are recurrent. 
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We note that the FM (resp. FR) model for C R = C L = p = I / 2  
is equivalent to the RM (resp. RR) model for C R = C L =  1/2; thus, 
Theorem 7 also holds for the FM and FR models for this case. Tdth (I8) 
has shown the existence of diffusion in a class of models generalizing the 
RM and RR models. 

3. T H E  D E T E R M I N I S T I C  M O D E L S  

The main idea in the proofs of Theorems 1-3 is the following. Sup- 
pose, instead of placing a particle at the origin and following its path, we 
pour some fluid on the origin. The fluid spreads along the lattice, but is 
directed (blocked) in the obvious way by mirrors (resp. rotators). For the 
parameter values of Theorems 1-3, percolation theory tells us that almost 
surely the fluid will only reach a finite number of lattice sites. Now the par- 
ticle in the DM model can only reach sites that have been wetted by such 
a fluid. Therefore for the parameter values in the theorems it visits almost 
surely a finite number of vertices and thus must be periodic. For  C < 1, 
paths which start in a finite percolation cluster must automatically be 
finite, but paths which start in infinite percolation clusters can also be (and 
often are) finite. Thus, the use of percolation results is far from being 
necessary for the particle path to be periodic. 

Proof of  Theorem 1. Here the idea is that the mirrors bounding a 
closed path themselves form a circuit surrounding the origin on a Z 2 
lattice. This idea is exploited by showing a duality to anisotropic bond 
percolation on Z 2, that is, bond percolation on Z 2 in which each horizon- 
tal edge is open with probability Ph and each vertical edge is open with 
probabi l i ty  pv. (4) Set p :=(ph+pv)/2. If ph>O, p~>0,  and p =  1/2, then 
the origin is almost surely in the interior of some open circuit. (4'19'2~ 

There are two dual lattices to the DM model which we can use to 
prove the theorem. The vertices of the first lattice are VI := (1/2 + n + 2m, 
1 / 2+n )  . . . .  z and the vertices of the second are V z : - - ( 1 / 2 + n + 2 m ,  
- 1 / 2 + n )  . . . .  z. If we connect each of the vertices to its four nearest 
neighbors (in the diagonal directions), then we form square lattices ~1 and 
~2 oriented at a 45 ~ angle. To prove the theorem, we need only consider 
one of the lattices, say ~'~ := 5al. Actually, the behavior on one lattice com- 
pletely determines the behavior on the other in the case C--1.  Now 
for each z~O we open (keep) bonds from ~ as follows. When 
z(2m + n, n)= R we open the vertical bond from (1/2 + 2m + n, 1/2 + n) to 
( - 1 / 2 + 2 m + n , - 1 / 2 + n )  and when z ( 2 m + n + l , n ) = L  we open the 
horizontal bond from (1/2+2m+n, 1 /2+n)  to (3/2+2m+n, - 1 / 2 + n ) .  
All other bonds are closed (erased). This gives rise to a sample configura- 
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tion of anisotropic percolation on this lattice with Ph = CL and p~ = CR 
(here we think of y = x as the vertical direction and y = - x  as the horizon- 
tal direction). Now applying the above-mentioned result of Kesten, we 
have the origin is almost surely in the interior of some open circuit. The 
orbit of all paths from the origin are trapped inside this circuit and thus are 
almost surely periodic. | 

Using the same kind of proof, Grimmett ~4t demonstrated Theorem ! in 
the case CR = CL = 1/2. In this case the dual bond percolation is isotropic 
Bernoulli percolation. If C <  1, then the above argument does not work. 
The path boundary can consist of edges of both 5Ol and 5~ Second, the 
jumps from one lattice to the other one are not edges in either lattice. 
Nonetheless, the probability of an open circuit around the origin is a lower 
bound for the probability of the origin being periodic. This lower bound is 
monotonically increasing in C. 

Proof of Theorem 2. (i) For  the proof we consider site percolation 
on Z*, the lattice whose vertices are just those of Z 2, but each vertex is 
connected to its eight nearest neighbors (the so-called *-neighborhood). 
Note that this is not a planar graph, since the diagonal edges intersect at 
points which are not vertices. It is known that p c (Z* )=  1 -p, . (Z2) ,  where 
the critical parameters are for site percolation on Z* and Z 2, respec- 
tively. (19'2~ The constant p~. := pc(Z 2) is known to be strictly larger than 
1/2 and strictly less than 1. The DR model on Z 2 is related to site percola- 
tion on Z* as follows. The path of the origin is periodic if it is bounded 
by a closed circuit (on Z*) of vertices having one fixed type of scatterer. 
Note that this is not a necessary condition for the periodicity of the 
origin. A closed circuit encloses the origin with probability 1 if CR 
or  C L > pc(Z2).  (4'19'20) 

(ii) Consider the case C =  1. In this case the DR model is equivalent 
to the DM model in the following sense. Construct two maps ~b~, 
~b2: s --* f2i~ M as follows: 

.=~z(i,j) if i + j = 0 m o d  2 
~l(z)(i,j). {-nz(i,j) if i + j = l m o d 2  

and 

:=~z(i,j) if i + j =  1 rood2 
02(z)(i,j) {~z(i,j) if i + j = 0 m o d  2 

where ~ R := L and -7 L := R. Note that both of these map the DR model 
with arbitrary parameters CR and CL to the DM model with parameters 
1/2 and 1/2. If a particle starts at the origin in a vertical (resp. horizontal) 
direction, then its DR path on the configuration z and its DM path on the 



298 Bunimovich and Troubetzkoy 

configuration ~2(z) [resp. ~l(Z)] will be identical. This follows from a 
simple parity condition; for both the DM and DR models the particle is 
traveling in the the same "direction" (i.e., horizontally or vertically) as it 
started on odd time steps and the other "direction" on even time steps. 
Thus, each DR rotator is hit by the particle from at most two directions 
and these directions are parallel, so the DR rotator acts like a DM mirror. 
Part (ii) of the theorem is now a corollary to Theorem 1. | 

Proof of Theorem 3. Without loss of generality we can assume 
Cc >>- 1/2. We prove the theorem by comparing with site percolation on T 2. 
For  each z e f2 open a vertex in T 2 if the scatterer there is a left scatterer. 
Since Cc >1 1/2, we have that the origin is almost surely in the interior of 
some open circuit. (4'19'2~ Back in f2, for either the DM or DR model, the 
left scatterers that appear along this circuit enclose a region from which the 
particle cannot escape. | 

Proof of Theorem 4. Consider the DM model on Z 2. If C = 0 ,  
CR=0,  or CL=O, then P(0, t ) = 0  for t > 0  and the diffusion is non- 
Gaussian. In all other cases the set of periodic points must have positive 
measure. For  example, the set of configurations with right mirrors at the 
lattice points ( _+ 1, 0) and (0, _+ 1 ) and left mirrors at the lattice point (0, 0) 
and _+(1, 1) has positive measure. For these configurations the particle 
starting at the origin and traveling in any of the four directions is periodic. 
Let r be the path of a particle starting to the right and Q the set 
of z for which o(z) is periodic. Let QN= {z e 0: per(o(z))=N}. Since 
Q = U QN, we have that iz(Q N) > 0 for some N. Then consider P(r, t) for 
r = 0  and t=Nm.  It follows that P(O, Nrn)>~ (1/2)#(QN). The 1/2 arises 
here since QN only takes into account particles going to the right. However, 
for a normal diffusion we have that the probability density Q(r, t) satisfies 
limt_~ ~ Q(r, t ) =  0 for all r s Z 2. Thus, the diffusion is non-Gaussian. The 
proof for the T 2 lattice or the DR model is analogous. I 

Proof of Theorem 5. A nontrivial rotational symmetry class {fj} on 
Z 2 either has scattering rules with all four left turns [i.e., Vi 3j s.t. f j ( i ) =  
i +  1 mod 4] or all four right turns [-i.e., Vi 3j s.t. f j( i)  = i -  1 mod 4], or 
with all four U-turns [i.e., Vi 3j s.t. f j( i)  = i]. For any of these cases it is not 
hard to see that periodic points have positive measure and the proof of 
Theorem 4 can be adapted to prove the theorem. 

On T 2 a nontrivial rotational symmetry class {fj} has one of the 
following: (i) all six left rurns [i.e., Vi qj s.t. f j( i)  = i +  1 mod 6], (ii) all six 
right turns [i.e., Vi Sj s.t. f j( i)  = i -  1 mod 6], (iii) all six 120 ~ left turns 
[i.e., Vi Sj s.t. f j( i)  = i +  2 mod 6], (iv) all six 120 ~ right turns [i.e., Vi Sj s.t. 
f j(i)  = i -  2 mod 6], or (v) all six U-turns [i.e., Vi 3j s.t. f j( i)  = i]. Again 
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periodic points have positive measure and we can apply the proof of 
Theorem 4. 

On Z" there is at least one two-dimensional plane A .... for which a 
nontrivial rotational symmetry class has scattering rules with all four left, 
right, or U-turns. Thus, periodic orbits have positive measure and once 
again we can apply the proof of Theorem 4. II 

4. T H E  F L I P P I N G  M O D E L S  

Proof of Theorem 6. First consider the FM model o n  2 2. Suppose 
the particle stays in a bounded region. Consider the set of lattice points O 
which the path hits infinitely often. Consider the set of rightmost points 
{(i . . . .  j ) } c O  and the topmost of these points (i . . . .  Jmax)" Since the 
particle hits this point (i . . . .  Jmax) infinitely often, using the Borel-Cantelli 
lemma and the fact that p > 0, we can conclude that the mirror at this loca- 
tion must flip from right to left infinitely often. However, when the mirror 
is a right mirror and the particle hits it, the particle must go further to the 
right or further up infinitely often, a contradiction. Thus, the particle 
cannot stay in any bounded region. It clearly follows that the particle can 
not be periodic. 

For  the FR model on Z 2 if p < 1, again consider the rightmost point 
the particle hits infinitely often. Consider the events that the particle 
approaches this vertex on the unique horizontal edge coming from the left. 
The rotator at this site must be a right rotator to keep the particle in the 
bounded region. This contradicts the stochasticity of the rotator flipping. If 
the particle approaches this vertex only a finite number of times horizon- 
tally, then it approaches vertically infinitely often and a similar argument 
works. 

Next consider the FR model on Z ~ for p--- 1, C =  1. Notice that for 
C = 1 the particle is always moving in the horizontal direction on even time 
steps and the vertical direction on odd time steps, or vice versa, depending 
only on which direction it started. Furthermore, when leaving any vertex 
the particle must take an even number of steps before it can return to the 
same vertex. Again consider the top right-hand-most point a particle hits 
infinitely often. The simple parity check described above tells us that the 
particle must always approach this vertex in the same direction, an 
immediate contradiction. 

Finally, for the case p =  1 and 0 <  C <  1 for the FR model on Z 2 a 
periodic orbit was constructed by Cohen. (8~ 

Next consider T 2 and the FM (resp. FR) model with p < 1. Consider 
the set O of lattice points which the particle hits infinitely often and the set 
of topmost points {(i, Jmax)} c O. Consider the rightmost point (i . . . .  J . . . .  ) 
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of this set. If the particle approaches it infinitely often from below-right, 
then by stochasticity it must go to the right-horizontally sometimes, a 
contradiction. If the particle approaches infinitely often from the left- 
horizontally, then by stochasticity it must go up-left sometimes, a contra- 
diction. If the particle approaches infinitely often from below-left, then by 
stochasticity it must go infinitely often left-horizontally, and then using the 
stochasticity of the first vertex with a scatterer that the particle reaches in 
this direction, we conclude that it must go up-right, a contradiction. 

Next, for the FM and FR models on T 2, if p - - 1  and C < I ,  we 
construct a periodic orbit by placing left mirrors (resp. rotators) along a 
hexagon and no mirror in the middle. Then any orbit starting from the 
origin is periodic. 

Finally, the FM model on T 2 in the case p = 1 and C = 1 was treated 
by Kong and Cohen. <6) The mechanism they describe which sends the 
particle to infinity in a "linear" way also works for the FR model on  T 2. I 

5. T H E  R A N D O M  M I R R O R  M O D E L  

Proof of Theorem 7. This model is the only Markovian model we 
discuss. We will show that if we consider the process only at the times 
when it hits every second mirror, then it is actually a random walk model. 
More specifically, for a given realization a of our process, construct the 
vectors {v/} given by: Vo is the vector pointing from the origin to the 
second scatterer which a hits and vi is the vector pointing from the 2ith 
scatterer which o- hits to the 2 ( i+  1)th scatterer which a hits. A sequence 
{vi} corresponds to two different paths a. However, if we know the direc- 
tion of a at time 0, then {v~} uniquely determines a. The covering process 
{vi} is an independent one, and thus it is a two-dimensional random 
walk/21) Since CR= CL=q>O, we have that the mean of this random 
walk is zero. Let Iv[ denote the length of the vector v (for ease of computa- 
tion we use ]vl = IVx] +IVy[, which is equivalent to Euclidean length) and 
P(v) denote the probability of the vector v. Let r n 2 = Z  Iv]2P(v) be the 
second moment of our process. It is well known that two-dimensional 
random walks with zero mean and finite second moment are recurrent (see, 
for example, Spitzer~21)). To see that our random walk has finite second 
moment, notice that the cardinality of the set of vectors with length n is 
4 ( n - 1 )  and for any such vector P ( v ) = q 2 ( 1 - 2 q )  n 2. Thus, 

m2=~ Iv]2P(v) = Z ~ (n)2p(v) 
n>~2 {v: Iv I = n }  

=4q  2 ~ ( n - 1 ) ( n )  2 ( 1 - 2 q )  " -2  (3) 
n~>2 
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is finite. W e  have  s h o w n  tha t  the process  {vi} is recurrent .  Since the 

r a n d o m  walk  is a t w o - t o - o n e  cover  of the R M  (resp. R R )  model ,  it fol lows 

tha t  the  R M  (resp. R R )  process  is also recur ren t .  | 
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